Plasmas as chemistry labs

The smaller a plasma, the larger the experimental setup needed to study it. It is worth the effort, because the reaction conditions found in cubic-millimetre-sized plasmas are very much unique. Even though plasmas at atmospheric pressure are often only a few cubic millimetres in size, they pack quite a punch. This is because special non-equilibrium states can be set up in them, which facilitate physical and chemical processes that are not possible in any other environment. The plasma thus becomes a special kind of laboratory, where atoms and molecules can be excited without their surroundings heating up. “Such excitations could theoretically also be generated in a gas, but to do so we would have to heat it to several thousand degrees Kelvin. As a result, the molecules would decompose,” explains Professor Uwe Czarnetzki, Head of the Chair of Plasma and Atomic Physics at the Faculty of Physics and Astronomy. For many years, he and his team have been developing methods to explore the processes inside plasmas and to characterise the plasmas. Plasmas boast a unique feature: electric fields can be used to supply energy to the electrons in the plasma; the electrons in turn interact with molecules such as nitrogen or carbon dioxide while transferring the energy to them. The molecules are excited, and this happens without the environment heating up in the process, as would be the case in a gas. The molecules that are excited to vibrate have a much higher reactivity than those in the ground state. Plasma can therefore change chemistry or even enable certain chemical processes in the first place. Consequently, plasma provides basic researchers with a unique opportunity to study the excitation of molecules and the associated chemistry beyond thermodynamic equilibrium. Uwe Czarnetzki is therefore primarily interested in the vibrational states of molecules in plasmas.

MGK Colloquium

Virtual MGK Colloquium

The scientific exchange among the CRC members and the group of Early Career Researcher occurred continuously during the three yearly project meetings and in the workshops organized by the CRC 1316 since it starting in 01/2018. However, it is very important that the ECR have also a platform to interact in a conference setting without the impact of their adviser to stimulate the discussions among the ECR. Instead, the CRC 1316 decided to organize an MGK Colloquium on its own by inviting the ECR from the CRC 1316 and from the SFB-TR 87. This meeting was organized by the ECRs J. Kuhfeld and P. Preissing in a virtual format on 21/04/2021. Prominent invited speakers at this event were Prof. A. Bogaerts (university Antwerp), Dr. S. Iseni (GREMI, Orléans) and Dr. T.L. Chng (LPP Paris). Beside presentations within a zoom meeting, virtual poster sessions were performed, enhancing the interaction between the ECR.

Honour of research of project A5

Project A5 on the Inside Front Cover of Plasma Processes and Polymers

The current issue (April 2021) of Plasma Processes and Polymers features work from project A5 of the CRC 1316 on the topic of "positive and negative streamer propagation in volume dielectric barrier discharges with planar and porous electrodes" on its inside front cover.

The scientists have found that the discharge characteristics of negative surface streamers differ significantly from those of positive surface streamers. While negative streamers develop along the dielectric surface, allowing them to propagate into much smaller dielectric pores, positive streamers floatingly develop above the dielectric.

New funding - Ruhr Conference

Plasma research contributes to new Research Center “Future Energy Materials and Systems”

The state NRW will fund four research centers and one research college during the next years in the framework of the funding instrument "Ruhr Konferenz". One research center “Future energy materials and systems” will support the plasma science at RUB in the area of synthetic plasma chemistry. Plasma chemistry is a key subject in the CRC 1316 and will be strengthend by this measure in the upcoming years. (Image (c) hagenvontroja)


Public Relations

Plasma Trial Day - What is plasma and where does it find application in technology & research?

Interested high school students are invited to participate in the Plasma Trial Day on Jan. 28, 2020 from 10 a.m. to 3 p.m. online. The chairs of the Ruhr-Universität Bochum will introduce themselves.

Technical plasmas find their application in many areas of everyday life and enable many achievements of our engineered world, such as in microelectronics, optics or mechanical engineering. But also in areas like air purification, sterilization and medicine plasmas can be used effectively in innovative concepts.

The fundamentals of technical applications are our field of research. We work interdisciplinary with partners from research and industry to develop innovative concepts and systems. And we would like to explain to you the largely unknown concept of physical plasma and introduce you to how we use and research the "fourth state of matter". Furthermore, we would like to show you how you might become part of a research team in the future!

Please register by email to: This email address is being protected from spambots. You need JavaScript enabled to view it..


Project meeting 16./17.11.2020

Fall meeting of the consortium

The annual fall meeting of the CRC took place online to discuss the recent progress within the projects and their collaborations. Due to the online format it was easy to integrate the Mercator fellows into these discussions. The meeting was complemented by a small workshop on communication aspects related to gender issues.

New appointment

Thomas Mussenbrock appointed at RUB

Since November 1, 2020, Prof. Dr. Thomas Mussenbrock has held the professorship for plasma technology at the Faculty of Electrical Engineering and Information Technology.

He conducts research on low temperature plasmas as well as on nanoelectronic and nanoionic components. His team develops analytical and numerical methods for modeling and simulation and applies them in interaction with experiments. "At the Ruhr-University Bochum, I find the ideal conditions for this," explains Thomas Mussenbrock. "Here, these experiments run right next door. I can follow them live and draw conclusions for our simulations, which in turn have a positive effect on the next experiments. In concrete terms, it is often a question of getting energy into a plasma efficiently and in a targeted manner. "Our goal is to excite only very specific particles." For Thomas Mussenbrock, much of his work revolves around the transport of energy and matter. "We want to understand the macroscopic behavior of the systems on the basis of the microscopic dynamics of the atoms, molecules, electrons and photons involved," the researcher explains.

In detail, plasmas play a decisive role in the manufacture of microelectronic components and circuits, for example. "More than 70 percent of all manufacturing steps are plasma-assisted," says Thomas Mussenbrock. "It is not for nothing that they say: No plasma, no iPad.

The chair of plasma technology is involved in two collaborative research centers among others. This research centers are the collaborative research center transregional SFB-TR 87 "Pulsed High-Power Plasmas for the Synthesis of Nanostructured Functional Layers," and the CRC 1316 "Transient Atmospheric Pressure Plasmas - from Plasma to Liquids to Solids,". Morevoer, Thomas Mussenbrock is also involved in the research group of the German Research Foundation FOR 2093 "Memristive Components for Neural Systems".

New in the team

Judith Golda appointed as assistant professor for plasma physics at interfaces

The members of the plasma research groups on campus welcome its newest member Jun. Prof. Dr. Judith Golda, who will take over the group "Plasma Physics at Interfaces" from 01.11.2020. Dr. Golda studied and received her doctorate in Bochum.

After several stays abroad, she was last employed as group leader at the Christian-Albrechts-University of Kiel. In her research, she focuses on the investigation of non-equilibrium plasmas and their interaction with surrounding media such as solids or liquids by means of numerous spectroscopic techniques. These topics are seamlessly embedded in the current SFB 1316.


Successful Plasma Summer School in 2020 in an online format

Due to the current situation, this year's summer school did not take place at the usual location of the physics center in Bad Honnef, but online. The regular programme consisting of basic plasma physics lectures combined with a master class on special topics could not take place as usual. Nevertheless, all teachers have agreed to deliver their basic lectures via an online video format. The summer school was extended to two weeks with two lectures per day. This year more people were able to tune in, because the online format is much easier to reach from regions with limited travel possibilities.
The lectures were technically flawless and the feedback from students and teachers was very positive. Many discussions and interactions could be made possible due to the high commitment of all teachers. Two practical workshops were also held by L. L. Alves on solving the Boltzmann equation and by N. Braithwaite on analyzing the Paschen curve.
We hope for another summer school in 2021, then again in the facilities of the physics center in Bad Honnef. The latest information on the planning for 2021 will be published at the summer school homepage in March 2021.